Announcements

1) Quiz Thursday over

$$
13.1,13.2 \text { (limits, }
$$

derivatives, and tangent lines)
2) Exam I next week

Vector Functions
(Chapter (3)

A vector function is a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ such that the images $f(t)$ are vectors in \mathbb{R}^{n}.

Example 1:
Some vector functions are

$$
\begin{aligned}
f(t)= & \langle 2+3 t, 9-5 t, 10 t) \\
& (\text { graph is a line }) \\
g(t)= & \langle\cos (t), \sin (t), t\rangle \\
& (\text { graph }=?)
\end{aligned}
$$

Vector Functions and Space Curves
(Section 13.1)

Graphs and such
Just like lines, the graph of a vector-valued function is made up of all terminal points of vectors in the range of the function.

Example 2: Graph

$$
f(t)=\langle\cos (t), \sin (t), t\rangle
$$

Mathematic

$$
\begin{aligned}
\operatorname{Parametric} \operatorname{Plot} 3 D & {[\{\cos [t], \sin [t], t\},} \\
& \left.\left\{t, t_{0}, t,\right\}\right]
\end{aligned}
$$

Where to and t_{1} are numbers you choose.
This is the graph of a helix

Limits

If $f(t)=\langle x(t), y(t), z(t)\rangle$ is a vector function, we let

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0}} f(t) \\
= & \left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle
\end{aligned}
$$

provided all these limits exist!

Note: If even one of the limits at $t \rightarrow$ to of $x(t), y(t)$, and $z(t)$ does not exist, then $\lim _{t \rightarrow t_{0}} f(t)$ does not exist!

Example 3:
Find

$$
\lim _{t \rightarrow 1}\left\langle\frac{t^{3}-t^{2}+t-1}{t-1}, \frac{\sin (5 t-5)}{7 t-7}, t^{\frac{1}{t-1}}\right\rangle
$$

Or show the limit does not exist.

$$
x(t)=\frac{t^{3}-t^{2}+t-1}{t-1}
$$

Plugging in $t=0$ gives
$\frac{0}{0}$, so the quotient is indeterminate.

We can factor

$$
t^{3}-t^{2}+t-1=(t-1)\left(t^{2}+1\right)
$$

so

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{t^{3}-t^{2}+t-1}{t-1} & =\lim _{t \rightarrow 1} \frac{(t-1)\left(t^{2}+1\right)}{t-1} \\
& =\lim _{t \rightarrow 1}\left(t^{2}+1\right)=2
\end{aligned}
$$

$\lim _{t \rightarrow 1} x(t)$ exists, so we turn to $\lim _{t \rightarrow 1} \frac{\sin (5 t-5)}{7 t-7}$.

Plugging in $t=1$ gives

$$
\frac{\sin (0)}{0}=\frac{0}{0} \text {, again }
$$

indeterminate, but we cant do any factoring this time!

We use I'Hopital's rule:
If $\lim _{t \rightarrow a} f(t)=\lim _{t \rightarrow a} g(t)=0$
(or both limits are $\pm \infty$),
then $\lim _{t \rightarrow a} \frac{f(t)}{g(t)}=\lim _{t \rightarrow a} \frac{f^{\prime}(t)}{g^{\prime}(t)}$
Then $\lim _{t \rightarrow 1} \frac{\sin (5 t-5)}{7 t-7}$
chain rule

$$
\begin{aligned}
& =\lim _{t \rightarrow 1} \frac{\cos (5 t-5) \cdot 5}{7} \\
& =5 / 7
\end{aligned}
$$

Now $\lim _{t \rightarrow 1} y(t)$ also exists,
so we only have to find
$\lim _{t \rightarrow 1} z(t)$ or show it
does not exist.
Plugging in $t=1$ to
$z(t)=t^{\frac{1}{t-1}}$ gives

$$
\frac{1}{0}
$$

, again indeterminate.

This time we don't have a quotient to use l'Hopital's rule, so we have to make one!

$$
\begin{aligned}
& \begin{aligned}
t^{\frac{1}{t-1}} & =e^{\ln \left(t^{\frac{1}{t-1}}\right)} \\
& =e^{\frac{\ln (t)}{t-1}} \text { (log rules) }
\end{aligned}
\end{aligned}
$$

If we can find $L=\lim _{t \rightarrow 1} \frac{\ln (t)}{t-1}$, the limit will be e^{L}.

Using I'Hopital's rule again,

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{\ln (t)}{t-1} & =\lim _{t \rightarrow 1} \frac{\frac{1}{t}}{1} \\
& =1 \text {,so } \\
\lim _{t \rightarrow 1} z(t) & =e^{1}=e
\end{aligned}
$$

Finally,

$$
\lim _{t \rightarrow 1} f(t)=\langle 2,5 / 7, e\rangle
$$

Continuity
We wont really do anything with this, but heres the definition: if f is a vector-valued function, we say that f is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} f(t)=f\left(t_{0}\right)
$$

Derivatives and Integrals of Vector Functions
(Section 13.2)

We will first look at secant lines, then make the step to tangent lines.

Example 4: If

$$
f(t)=\langle\cos (t), \sin (t), t\rangle,
$$

find the equation of the line through the terminal points of $f(0)=\langle 1,0,0\rangle$ and $f(\pi / \alpha)=\langle 0,1, \pi / \alpha\rangle$

The direction vector is given by subtracting

$$
(1,0,0) \text { from }(0,1, \pi / 2)
$$

We get the vector
$\langle-1,1, \pi / 2\rangle$, so that the equation for the line is

$$
\langle 1,0,0\rangle+t\langle-1,1, \pi / 2\rangle
$$

Tangent Lines

If $f(t)=\langle x(t), y(t), z(t)\rangle$,
then we can construct the secant line through the terminal points of

$$
f\left(t_{0}\right)=\langle\underbrace{x\left(t_{0}\right)}_{x_{0}}, \underbrace{y\left(t_{0}\right)}_{y_{0}}, \underbrace{z\left(t_{0}\right)}_{z_{0}}
$$

and

$$
\begin{aligned}
& f\left(t_{1}\right)=\langle\underbrace{x\left(t_{1}\right)}_{x_{1}}, \underbrace{y\left(t_{1}\right)}_{y_{1}}, \underbrace{z\left(t_{1}\right)}_{z_{1}}) \\
& \text { provided } f\left(t_{0}\right) \neq f\left(t_{1}\right)
\end{aligned}
$$

The line will have the form

$$
\begin{aligned}
& \left\langle x_{0}, y_{0}, z_{0}\right\rangle+S\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle \\
= & \left\langle x_{0}, y_{0}, z_{0}\right\rangle+\frac{S}{t-t_{0}}\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle \\
= & \left\langle x_{0}, y_{0}, z_{0}\right\rangle+s\left\langle\frac{x_{1}-x_{0}}{t_{1}-t_{0}}, \frac{y_{1}-y_{0}}{t_{1}-t_{0}}, \frac{z_{1}-z_{0}}{t_{1}-t_{0}}\right\rangle
\end{aligned}
$$

since $\frac{1}{t_{1}-t_{0}}\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$ is a vector parallel to $\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$

Now take the limit as t, \rightarrow to.
Since $\left\langle x_{0}, y_{0}, z_{0}\right.$) has constant coordinates, the limit passes by to

$$
\begin{aligned}
& s\left\langle\lim _{t_{1} \rightarrow t_{0}} \frac{x_{1}-x_{0}}{t_{1}-t_{0}} \lim _{1, t \rightarrow t_{0}} \frac{y_{1}-y_{0}}{t_{1}-t_{0}} \lim _{t \rightarrow t_{0}-t_{1}-t_{0}}\right\rangle \\
= & S\left\langle\lim _{t \rightarrow t_{0}} \frac{x\left(t_{1}\right)-x\left(t_{0}\right)}{t_{1}-t_{0}} \lim _{1} \rightarrow \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{t_{1}-t_{0}} \lim _{t \rightarrow t 0} \frac{z\left(t_{1}\right)-z\left(t_{0}\right)}{t_{1}-t_{0}}\right\rangle \\
= & S\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right\rangle
\end{aligned}
$$

provided all these limits exist!

Then the equation of the tangent line at $t=t_{0}$ is

$$
\left\langle x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)+S\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right\rangle
$$

Example 5: Find the tangent line to

$$
\begin{aligned}
& k(t)=\left\langle\ln \left(3^{t^{3}}\right), e^{\log _{4}(t)}, t^{t}\right\rangle \\
& \text { at } t=1 \\
& x(t)=\ln \left(3^{t^{3}}\right)=t^{3} \ln (3) \text { by }
\end{aligned}
$$

\log properties, so

$$
\begin{gathered}
x^{\prime}(t)=3 t^{2} \ln (3), \text { and } \\
x(1)=\ln (3), x^{\prime}(1)=3 \ln (3)
\end{gathered}
$$

$$
\begin{aligned}
y(t) & =e^{\log _{4}(t)} \\
& =e^{\frac{\ln (t)}{\ln (4)}} \\
& =e^{\ln \left(t^{\left.\frac{1}{\ln (4)}\right)}\right.} \\
& =t^{\frac{1}{\ln (4)}}, \text { so } \\
y^{\prime}(t) & =\frac{1}{\ln (4)} t^{\left(\frac{1}{\left.\ln (4)^{-1}\right)}\right.} \text {, and } \\
y(1) & =1, y^{\prime}(1)=\frac{1}{\ln (4)}
\end{aligned}
$$

The hardest derivative is last:

$$
\begin{aligned}
z(t) & =t^{t} \\
& =e^{\ln \left(t^{t}\right)} \\
& =e^{t \ln (t)}
\end{aligned}
$$

Then
Chain rule

$$
\begin{aligned}
z^{\prime}(t) & =e^{t \ln (t)} \frac{d}{d t}(t \ln (t)) \\
& =e^{t \ln (t)}(\ln (t)+1) \\
& =t^{t}(\ln (t)+1) \text {, and } \\
z(1)=1, & z^{\prime}(1)=1
\end{aligned}
$$

Putting all this together, the tangent line is given by

$$
\begin{aligned}
& \langle x(1), y(1), z(1))+s\left\langle x^{\prime}(1), y^{\prime}(1), z^{\prime}(1)\right\rangle \\
= & \left\langle\langle\ln (3), 1,1\rangle+s\left\langle 3 \ln (3), \left.\frac{1}{\ln (4)} \right\rvert\,\right\rangle\right.
\end{aligned}
$$

The Derivative

If it exists, the derivative of a vector-valued function

$$
f(t)=\langle x(t), y(t), z(t)\rangle \text { is }
$$

the function

$$
f^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

We can then restate the formula for the tangent line at $t=t_{0}$ as

$$
f\left(t_{0}\right)+s f^{\prime}\left(t_{0}\right)
$$

